\(\int \frac {1}{(d+e x)^2 (a+b x+c x^2)} \, dx\) [2188]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 186 \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=-\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}-\frac {\left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} \left (c d^2-b d e+a e^2\right )^2}+\frac {e (2 c d-b e) \log (d+e x)}{\left (c d^2-b d e+a e^2\right )^2}-\frac {e (2 c d-b e) \log \left (a+b x+c x^2\right )}{2 \left (c d^2-b d e+a e^2\right )^2} \]

[Out]

-e/(a*e^2-b*d*e+c*d^2)/(e*x+d)+e*(-b*e+2*c*d)*ln(e*x+d)/(a*e^2-b*d*e+c*d^2)^2-1/2*e*(-b*e+2*c*d)*ln(c*x^2+b*x+
a)/(a*e^2-b*d*e+c*d^2)^2-(2*c^2*d^2+b^2*e^2-2*c*e*(a*e+b*d))*arctanh((2*c*x+b)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*
e+c*d^2)^2/(-4*a*c+b^2)^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {723, 814, 648, 632, 212, 642} \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=-\frac {\text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right ) \left (-2 c e (a e+b d)+b^2 e^2+2 c^2 d^2\right )}{\sqrt {b^2-4 a c} \left (a e^2-b d e+c d^2\right )^2}-\frac {e (2 c d-b e) \log \left (a+b x+c x^2\right )}{2 \left (a e^2-b d e+c d^2\right )^2}-\frac {e}{(d+e x) \left (a e^2-b d e+c d^2\right )}+\frac {e (2 c d-b e) \log (d+e x)}{\left (a e^2-b d e+c d^2\right )^2} \]

[In]

Int[1/((d + e*x)^2*(a + b*x + c*x^2)),x]

[Out]

-(e/((c*d^2 - b*d*e + a*e^2)*(d + e*x))) - ((2*c^2*d^2 + b^2*e^2 - 2*c*e*(b*d + a*e))*ArcTanh[(b + 2*c*x)/Sqrt
[b^2 - 4*a*c]])/(Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)^2) + (e*(2*c*d - b*e)*Log[d + e*x])/(c*d^2 - b*d*e
+ a*e^2)^2 - (e*(2*c*d - b*e)*Log[a + b*x + c*x^2])/(2*(c*d^2 - b*d*e + a*e^2)^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 723

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m + 1)/((m
+ 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[(d + e*x)^(m + 1)*(Simp[c*d - b*e - c
*e*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[m, -1]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {\int \frac {c d-b e-c e x}{(d+e x) \left (a+b x+c x^2\right )} \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {\int \left (-\frac {e^2 (-2 c d+b e)}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {c^2 d^2+b^2 e^2-c e (2 b d+a e)-c e (2 c d-b e) x}{\left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )}\right ) \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {e (2 c d-b e) \log (d+e x)}{\left (c d^2-b d e+a e^2\right )^2}+\frac {\int \frac {c^2 d^2+b^2 e^2-c e (2 b d+a e)-c e (2 c d-b e) x}{a+b x+c x^2} \, dx}{\left (c d^2-b d e+a e^2\right )^2} \\ & = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {e (2 c d-b e) \log (d+e x)}{\left (c d^2-b d e+a e^2\right )^2}-\frac {(e (2 c d-b e)) \int \frac {b+2 c x}{a+b x+c x^2} \, dx}{2 \left (c d^2-b d e+a e^2\right )^2}+\frac {\left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) \int \frac {1}{a+b x+c x^2} \, dx}{2 \left (c d^2-b d e+a e^2\right )^2} \\ & = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {e (2 c d-b e) \log (d+e x)}{\left (c d^2-b d e+a e^2\right )^2}-\frac {e (2 c d-b e) \log \left (a+b x+c x^2\right )}{2 \left (c d^2-b d e+a e^2\right )^2}-\frac {\left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{\left (c d^2-b d e+a e^2\right )^2} \\ & = -\frac {e}{\left (c d^2-b d e+a e^2\right ) (d+e x)}-\frac {\left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) \tanh ^{-1}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} \left (c d^2-b d e+a e^2\right )^2}+\frac {e (2 c d-b e) \log (d+e x)}{\left (c d^2-b d e+a e^2\right )^2}-\frac {e (2 c d-b e) \log \left (a+b x+c x^2\right )}{2 \left (c d^2-b d e+a e^2\right )^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.81 \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=\frac {-\frac {2 e \left (c d^2+e (-b d+a e)\right )}{d+e x}+\frac {2 \left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) \arctan \left (\frac {b+2 c x}{\sqrt {-b^2+4 a c}}\right )}{\sqrt {-b^2+4 a c}}-2 e (-2 c d+b e) \log (d+e x)+e (-2 c d+b e) \log (a+x (b+c x))}{2 \left (c d^2+e (-b d+a e)\right )^2} \]

[In]

Integrate[1/((d + e*x)^2*(a + b*x + c*x^2)),x]

[Out]

((-2*e*(c*d^2 + e*(-(b*d) + a*e)))/(d + e*x) + (2*(2*c^2*d^2 + b^2*e^2 - 2*c*e*(b*d + a*e))*ArcTan[(b + 2*c*x)
/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c] - 2*e*(-2*c*d + b*e)*Log[d + e*x] + e*(-2*c*d + b*e)*Log[a + x*(b + c
*x)])/(2*(c*d^2 + e*(-(b*d) + a*e))^2)

Maple [A] (verified)

Time = 29.67 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.06

method result size
default \(\frac {\frac {\left (b c \,e^{2}-2 d e \,c^{2}\right ) \ln \left (c \,x^{2}+b x +a \right )}{2 c}+\frac {2 \left (-a c \,e^{2}+b^{2} e^{2}-2 b c d e +c^{2} d^{2}-\frac {\left (b c \,e^{2}-2 d e \,c^{2}\right ) b}{2 c}\right ) \arctan \left (\frac {2 c x +b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{\left (e^{2} a -b d e +c \,d^{2}\right )^{2}}-\frac {e}{\left (e^{2} a -b d e +c \,d^{2}\right ) \left (e x +d \right )}-\frac {e \left (b e -2 c d \right ) \ln \left (e x +d \right )}{\left (e^{2} a -b d e +c \,d^{2}\right )^{2}}\) \(197\)
risch \(-\frac {e}{\left (e^{2} a -b d e +c \,d^{2}\right ) \left (e x +d \right )}-\frac {e^{2} \ln \left (e x +d \right ) b}{a^{2} e^{4}-2 a b d \,e^{3}+2 a c \,d^{2} e^{2}+b^{2} d^{2} e^{2}-2 d^{3} e b c +c^{2} d^{4}}+\frac {2 e \ln \left (e x +d \right ) c d}{a^{2} e^{4}-2 a b d \,e^{3}+2 a c \,d^{2} e^{2}+b^{2} d^{2} e^{2}-2 d^{3} e b c +c^{2} d^{4}}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (4 a^{3} c \,e^{4}-a^{2} b^{2} e^{4}-8 a^{2} b c d \,e^{3}+8 a^{2} c^{2} d^{2} e^{2}+2 a \,b^{3} d \,e^{3}+2 a \,b^{2} c \,d^{2} e^{2}-8 a b \,c^{2} d^{3} e +4 a \,c^{3} d^{4}-b^{4} d^{2} e^{2}+2 b^{3} c \,d^{3} e -b^{2} c^{2} d^{4}\right ) \textit {\_Z}^{2}+\left (-4 a b c \,e^{2}+8 a \,c^{2} d e +e^{2} b^{3}-2 b^{2} d c e \right ) \textit {\_Z} +c^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (6 e^{6} c \,a^{3}-2 a^{2} b^{2} e^{6}-10 a^{2} b c d \,e^{5}+10 d^{2} e^{4} a^{2} c^{2}+4 a \,b^{3} d \,e^{5}-2 a \,b^{2} c \,d^{2} e^{4}-4 a b \,c^{2} d^{3} e^{3}+2 d^{4} e^{2} c^{3} a -2 b^{4} d^{2} e^{4}+6 b^{3} c \,d^{3} e^{3}-8 b^{2} c^{2} d^{4} e^{2}+6 b \,c^{3} d^{5} e -2 d^{6} c^{4}\right ) \textit {\_R}^{2}+\left (-2 a b c \,e^{4}+4 d \,e^{3} c^{2} a +2 b^{2} d \,e^{3} c -6 d^{2} e^{2} b \,c^{2}+4 d^{3} e \,c^{3}\right ) \textit {\_R} +c^{2} e^{2}\right ) x +\left (-a^{3} b \,e^{6}+8 d \,e^{5} c \,a^{3}+a^{2} b^{2} d \,e^{5}-19 a^{2} b c \,d^{2} e^{4}+16 a^{2} c^{2} d^{3} e^{3}+a \,b^{3} d^{2} e^{4}+10 a \,b^{2} c \,d^{3} e^{3}-19 a b \,c^{2} d^{4} e^{2}+8 a \,c^{3} d^{5} e -b^{4} d^{3} e^{3}+b^{3} c \,d^{4} e^{2}+b^{2} c^{2} d^{5} e -b \,c^{3} d^{6}\right ) \textit {\_R}^{2}+\left (e^{4} a^{2} c -a \,b^{2} e^{4}+2 d^{2} e^{2} c^{2} a +b^{3} d \,e^{3}-2 b^{2} c \,d^{2} e^{2}+d^{4} c^{3}\right ) \textit {\_R} +b c \,e^{2}-d e \,c^{2}\right )\right )\) \(768\)

[In]

int(1/(e*x+d)^2/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/(a*e^2-b*d*e+c*d^2)^2*(1/2*(b*c*e^2-2*c^2*d*e)/c*ln(c*x^2+b*x+a)+2*(-a*c*e^2+b^2*e^2-2*b*c*d*e+c^2*d^2-1/2*(
b*c*e^2-2*c^2*d*e)*b/c)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)))-e/(a*e^2-b*d*e+c*d^2)/(e*x+d)-e
*(b*e-2*c*d)/(a*e^2-b*d*e+c*d^2)^2*ln(e*x+d)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 530 vs. \(2 (180) = 360\).

Time = 2.03 (sec) , antiderivative size = 1079, normalized size of antiderivative = 5.80 \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=\text {Too large to display} \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

[-1/2*(2*(b^2*c - 4*a*c^2)*d^2*e - 2*(b^3 - 4*a*b*c)*d*e^2 + 2*(a*b^2 - 4*a^2*c)*e^3 + (2*c^2*d^3 - 2*b*c*d^2*
e + (b^2 - 2*a*c)*d*e^2 + (2*c^2*d^2*e - 2*b*c*d*e^2 + (b^2 - 2*a*c)*e^3)*x)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^2
+ 2*b*c*x + b^2 - 2*a*c + sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) + (2*(b^2*c - 4*a*c^2)*d^2*e - (b^
3 - 4*a*b*c)*d*e^2 + (2*(b^2*c - 4*a*c^2)*d*e^2 - (b^3 - 4*a*b*c)*e^3)*x)*log(c*x^2 + b*x + a) - 2*(2*(b^2*c -
 4*a*c^2)*d^2*e - (b^3 - 4*a*b*c)*d*e^2 + (2*(b^2*c - 4*a*c^2)*d*e^2 - (b^3 - 4*a*b*c)*e^3)*x)*log(e*x + d))/(
(b^2*c^2 - 4*a*c^3)*d^5 - 2*(b^3*c - 4*a*b*c^2)*d^4*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^3*e^2 - 2*(a*b^3 - 4*a
^2*b*c)*d^2*e^3 + (a^2*b^2 - 4*a^3*c)*d*e^4 + ((b^2*c^2 - 4*a*c^3)*d^4*e - 2*(b^3*c - 4*a*b*c^2)*d^3*e^2 + (b^
4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^3 - 2*(a*b^3 - 4*a^2*b*c)*d*e^4 + (a^2*b^2 - 4*a^3*c)*e^5)*x), -1/2*(2*(b^2*c
 - 4*a*c^2)*d^2*e - 2*(b^3 - 4*a*b*c)*d*e^2 + 2*(a*b^2 - 4*a^2*c)*e^3 + 2*(2*c^2*d^3 - 2*b*c*d^2*e + (b^2 - 2*
a*c)*d*e^2 + (2*c^2*d^2*e - 2*b*c*d*e^2 + (b^2 - 2*a*c)*e^3)*x)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*
(2*c*x + b)/(b^2 - 4*a*c)) + (2*(b^2*c - 4*a*c^2)*d^2*e - (b^3 - 4*a*b*c)*d*e^2 + (2*(b^2*c - 4*a*c^2)*d*e^2 -
 (b^3 - 4*a*b*c)*e^3)*x)*log(c*x^2 + b*x + a) - 2*(2*(b^2*c - 4*a*c^2)*d^2*e - (b^3 - 4*a*b*c)*d*e^2 + (2*(b^2
*c - 4*a*c^2)*d*e^2 - (b^3 - 4*a*b*c)*e^3)*x)*log(e*x + d))/((b^2*c^2 - 4*a*c^3)*d^5 - 2*(b^3*c - 4*a*b*c^2)*d
^4*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^3*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d^2*e^3 + (a^2*b^2 - 4*a^3*c)*d*e^4 + ((b
^2*c^2 - 4*a*c^3)*d^4*e - 2*(b^3*c - 4*a*b*c^2)*d^3*e^2 + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^3 - 2*(a*b^3 - 4
*a^2*b*c)*d*e^4 + (a^2*b^2 - 4*a^3*c)*e^5)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*x+d)**2/(c*x**2+b*x+a),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.77 \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=-\frac {e^{3}}{{\left (c d^{2} e^{2} - b d e^{3} + a e^{4}\right )} {\left (e x + d\right )}} - \frac {{\left (2 \, c d e - b e^{2}\right )} \log \left (c - \frac {2 \, c d}{e x + d} + \frac {c d^{2}}{{\left (e x + d\right )}^{2}} + \frac {b e}{e x + d} - \frac {b d e}{{\left (e x + d\right )}^{2}} + \frac {a e^{2}}{{\left (e x + d\right )}^{2}}\right )}{2 \, {\left (c^{2} d^{4} - 2 \, b c d^{3} e + b^{2} d^{2} e^{2} + 2 \, a c d^{2} e^{2} - 2 \, a b d e^{3} + a^{2} e^{4}\right )}} + \frac {{\left (2 \, c^{2} d^{2} e^{2} - 2 \, b c d e^{3} + b^{2} e^{4} - 2 \, a c e^{4}\right )} \arctan \left (\frac {2 \, c d - \frac {2 \, c d^{2}}{e x + d} - b e + \frac {2 \, b d e}{e x + d} - \frac {2 \, a e^{2}}{e x + d}}{\sqrt {-b^{2} + 4 \, a c} e}\right )}{{\left (c^{2} d^{4} - 2 \, b c d^{3} e + b^{2} d^{2} e^{2} + 2 \, a c d^{2} e^{2} - 2 \, a b d e^{3} + a^{2} e^{4}\right )} \sqrt {-b^{2} + 4 \, a c} e^{2}} \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

-e^3/((c*d^2*e^2 - b*d*e^3 + a*e^4)*(e*x + d)) - 1/2*(2*c*d*e - b*e^2)*log(c - 2*c*d/(e*x + d) + c*d^2/(e*x +
d)^2 + b*e/(e*x + d) - b*d*e/(e*x + d)^2 + a*e^2/(e*x + d)^2)/(c^2*d^4 - 2*b*c*d^3*e + b^2*d^2*e^2 + 2*a*c*d^2
*e^2 - 2*a*b*d*e^3 + a^2*e^4) + (2*c^2*d^2*e^2 - 2*b*c*d*e^3 + b^2*e^4 - 2*a*c*e^4)*arctan((2*c*d - 2*c*d^2/(e
*x + d) - b*e + 2*b*d*e/(e*x + d) - 2*a*e^2/(e*x + d))/(sqrt(-b^2 + 4*a*c)*e))/((c^2*d^4 - 2*b*c*d^3*e + b^2*d
^2*e^2 + 2*a*c*d^2*e^2 - 2*a*b*d*e^3 + a^2*e^4)*sqrt(-b^2 + 4*a*c)*e^2)

Mupad [B] (verification not implemented)

Time = 16.72 (sec) , antiderivative size = 1786, normalized size of antiderivative = 9.60 \[ \int \frac {1}{(d+e x)^2 \left (a+b x+c x^2\right )} \, dx=\text {Too large to display} \]

[In]

int(1/((d + e*x)^2*(a + b*x + c*x^2)),x)

[Out]

(log(a*e^4*(b^2 - 4*a*c)^(5/2) + 8*a*b^5*e^4 + 8*b^6*e^4*x - 4*c^3*d^4*(b^2 - 4*a*c)^(3/2) + 4*b^3*c^3*d^4 + 4
*b^3*e^4*x*(b^2 - 4*a*c)^(3/2) - 60*a^2*b^3*c*e^4 + 112*a^3*b*c^2*e^4 + 256*a^2*c^4*d^3*e - 256*a^3*c^3*d*e^3
+ 8*b^4*c^2*d^3*e - 4*b^5*c*d^2*e^2 - 32*a^3*c^3*e^4*x + 8*b^2*c^4*d^4*x + 10*b*d*e^3*(b^2 - 4*a*c)^(5/2) + 4*
b*e^4*x*(b^2 - 4*a*c)^(5/2) - 16*a*b*c^4*d^4 - 32*a*c^5*d^4*x + 7*a*b^2*e^4*(b^2 - 4*a*c)^(3/2) - 10*b^3*d*e^3
*(b^2 - 4*a*c)^(3/2) - 14*c*d^2*e^2*(b^2 - 4*a*c)^(5/2) - 8*c*d*e^3*x*(b^2 - 4*a*c)^(5/2) - 24*a*b^4*c*d*e^3 -
 64*a*b^4*c*e^4*x - 32*b^5*c*d*e^3*x - 8*b*c^2*d^3*e*(b^2 - 4*a*c)^(3/2) - 32*c^3*d^3*e*x*(b^2 - 4*a*c)^(3/2)
- 96*a*b^2*c^3*d^3*e - 16*b^3*c^3*d^3*e*x + 18*b^2*c*d^2*e^2*(b^2 - 4*a*c)^(3/2) + 56*a*b^3*c^2*d^2*e^2 - 160*
a^2*b*c^3*d^2*e^2 + 160*a^2*b^2*c^2*d*e^3 + 136*a^2*b^2*c^2*e^4*x + 448*a^2*c^4*d^2*e^2*x + 40*b^4*c^2*d^2*e^2
*x + 48*b*c^2*d^2*e^2*x*(b^2 - 4*a*c)^(3/2) - 272*a*b^2*c^3*d^2*e^2*x + 64*a*b*c^4*d^3*e*x - 24*b^2*c*d*e^3*x*
(b^2 - 4*a*c)^(3/2) + 240*a*b^3*c^2*d*e^3*x - 448*a^2*b*c^3*d*e^3*x)*(a*(e^2*(2*b*c + c*(b^2 - 4*a*c)^(1/2)) -
 4*c^2*d*e) + e*(b^2*c*d + b*c*d*(b^2 - 4*a*c)^(1/2)) - e^2*(b^3/2 + (b^2*(b^2 - 4*a*c)^(1/2))/2) - c^2*d^2*(b
^2 - 4*a*c)^(1/2)))/(4*a*c^3*d^4 + 4*a^3*c*e^4 - a^2*b^2*e^4 - b^2*c^2*d^4 - b^4*d^2*e^2 + 8*a^2*c^2*d^2*e^2 +
 2*a*b^3*d*e^3 + 2*b^3*c*d^3*e - 8*a*b*c^2*d^3*e - 8*a^2*b*c*d*e^3 + 2*a*b^2*c*d^2*e^2) + (log(a*e^4*(b^2 - 4*
a*c)^(5/2) - 8*a*b^5*e^4 - 8*b^6*e^4*x - 4*c^3*d^4*(b^2 - 4*a*c)^(3/2) - 4*b^3*c^3*d^4 + 4*b^3*e^4*x*(b^2 - 4*
a*c)^(3/2) + 60*a^2*b^3*c*e^4 - 112*a^3*b*c^2*e^4 - 256*a^2*c^4*d^3*e + 256*a^3*c^3*d*e^3 - 8*b^4*c^2*d^3*e +
4*b^5*c*d^2*e^2 + 32*a^3*c^3*e^4*x - 8*b^2*c^4*d^4*x + 10*b*d*e^3*(b^2 - 4*a*c)^(5/2) + 4*b*e^4*x*(b^2 - 4*a*c
)^(5/2) + 16*a*b*c^4*d^4 + 32*a*c^5*d^4*x + 7*a*b^2*e^4*(b^2 - 4*a*c)^(3/2) - 10*b^3*d*e^3*(b^2 - 4*a*c)^(3/2)
 - 14*c*d^2*e^2*(b^2 - 4*a*c)^(5/2) - 8*c*d*e^3*x*(b^2 - 4*a*c)^(5/2) + 24*a*b^4*c*d*e^3 + 64*a*b^4*c*e^4*x +
32*b^5*c*d*e^3*x - 8*b*c^2*d^3*e*(b^2 - 4*a*c)^(3/2) - 32*c^3*d^3*e*x*(b^2 - 4*a*c)^(3/2) + 96*a*b^2*c^3*d^3*e
 + 16*b^3*c^3*d^3*e*x + 18*b^2*c*d^2*e^2*(b^2 - 4*a*c)^(3/2) - 56*a*b^3*c^2*d^2*e^2 + 160*a^2*b*c^3*d^2*e^2 -
160*a^2*b^2*c^2*d*e^3 - 136*a^2*b^2*c^2*e^4*x - 448*a^2*c^4*d^2*e^2*x - 40*b^4*c^2*d^2*e^2*x + 48*b*c^2*d^2*e^
2*x*(b^2 - 4*a*c)^(3/2) + 272*a*b^2*c^3*d^2*e^2*x - 64*a*b*c^4*d^3*e*x - 24*b^2*c*d*e^3*x*(b^2 - 4*a*c)^(3/2)
- 240*a*b^3*c^2*d*e^3*x + 448*a^2*b*c^3*d*e^3*x)*(a*(e^2*(2*b*c - c*(b^2 - 4*a*c)^(1/2)) - 4*c^2*d*e) + e*(b^2
*c*d - b*c*d*(b^2 - 4*a*c)^(1/2)) - e^2*(b^3/2 - (b^2*(b^2 - 4*a*c)^(1/2))/2) + c^2*d^2*(b^2 - 4*a*c)^(1/2)))/
(4*a*c^3*d^4 + 4*a^3*c*e^4 - a^2*b^2*e^4 - b^2*c^2*d^4 - b^4*d^2*e^2 + 8*a^2*c^2*d^2*e^2 + 2*a*b^3*d*e^3 + 2*b
^3*c*d^3*e - 8*a*b*c^2*d^3*e - 8*a^2*b*c*d*e^3 + 2*a*b^2*c*d^2*e^2) - e/((d + e*x)*(a*e^2 + c*d^2 - b*d*e)) -
(log(d + e*x)*(b*e^2 - 2*c*d*e))/(a^2*e^4 + c^2*d^4 + b^2*d^2*e^2 - 2*a*b*d*e^3 - 2*b*c*d^3*e + 2*a*c*d^2*e^2)